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Abstract: It is the purpose of the present paper to introduce an approach based on the 

homotopy analysis method to solve the nonlinear initial or boundary value problems with 

strongly nonlinear terms like (sqrt root, exp, sinh, cos,…). This approach reduces time 

consuming in the homotopy analysis method. Advantage of proposed idea is solving the 

problems without any transformation or approximation. The Sine-Gordon equation and some 

examples are used as illustrative examples to show the simplicity and effectiveness of the 

proposed approach. Also we solve the first extension of Bratu problem to show the proposed 

approach is capable to predict and calculate all branches of the solutions simultaneously. 
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1. Introduction 

The homotopy analysis method (HAM) [1–3] was first proposed by Liao in 1992 to solve many 

nonlinear problems. Liao first used the concept of homotopy to obtain analytic approximations of 

nonlinear equations, 𝑁[𝑢(𝑥)] by means constructing so-called the zero-order deformation equation  

(1 − 𝑞)𝐿[𝜙(𝑥, 𝑞) − 𝑢0(𝑥)] = 𝑞ℏ𝐻(𝑥)(𝑁[𝜙(𝑥, 𝑞)]),                                                                    (1)   
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where 𝑞 ∈  [0, 1] is an embedding parameter, 𝑁 is a nonlinear operator, 𝑢(𝑥) is an unknown function, 

and 𝑥 denotes independent variable, 𝑢0(𝑥) denotes an initial guess of the exact solution 𝑢(𝑥) which 

satisfies the initial or boundary conditions, ℏ ≠ 0 an auxiliary parameter, 𝐻(𝑥) an auxiliary function and 

𝐿 an auxiliary linear operator. Obviously, we have 𝜙(𝑥, 0) = 𝛽 when 𝑞 = 0 and 𝜙(𝑥, 1) = 𝑢(𝑥) when 

𝑞 = 1, respectively. The Taylor series of 𝜙(𝑥, 𝑞) with respect to the embedding parameter 𝑞 reads 

𝜙(𝒙; 𝑞) =  𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)

+∞

𝑚=1

𝑞𝑚,                                                                                                         (2) 

where 

𝑢𝑚(𝑥) =
1

𝑚!

𝜕𝑚𝜙(𝑥, 𝑞)

𝜕𝑞𝑚
|
𝑞=0

.                                                                                                                     (3) 

Differentiating the zero-order deformation equation (1) 𝑚  times with respective to the 

embedding parameter 𝑞 and then dividing it by 𝑚! and finally setting 𝑞 = 0, we have the so-called 𝑚𝑡ℎ-

order deformation equation.  

𝐿[𝑢𝑚(𝑥) − 𝜒𝑚𝑢𝑚−1(𝑥)] = ℏ 𝐻(𝑥)𝑅𝑚(𝑢⃗ 𝑚−1(𝑥))                                                                           (4) 

where  𝜒𝑚 is defined by   

𝜒𝑚 = {
0 ,𝑚 ≤ 1
1,   𝑚 > 1

                                                                                                                              (5) 

and  

𝑅𝑚(𝑢⃗ 𝑚−1(𝑥)) =
1

(𝑚 − 1)!

𝜕𝑚−1𝑁[𝜙(𝑥, 𝑞)]

𝜕𝑞𝑚−1
|
𝑞=0

.                                                                     (6) 

The 𝑀𝑡ℎ-order approximation of 𝑢(𝑥) is given by 

𝑢(𝑥) ≅ 𝑈𝑀(𝑥, ℏ) = ∑ 𝑢𝑘(𝑥)

𝑀

𝑘=0

                                                                                                                   (7) 

In recent years determining approximate analytical solutions using the homotopy analysis 

method(HAM) has generated a lot of interest due to its applicability and efficiency [4-8]. Some 

modifications for different types of nonlinear equations have been developed in the literature  [9-19]. In 

this paper we proposed an approach to improve and  reduce time consuming in HAM for initial or 

boundary value problems with strong nonlinear terms terms like (sqrt root, exp, sinh, cos,…). The Sine-

Gordon equation [13,20-21] and some examples are used as illustrative examples to show the simplicity 

and effectiveness of the proposed approach. Also we solve the first extension of Bratu problem [22] to 
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show the proposed approach is capable to predict and calculate all branches of the solutions 

simultaneously. The numerical computation have done by Mathematica program by PC, CPU 

G620@2.60 GHz and 4GB of RAM. 

2. The Proposed Approach  

Consider the nonlinear initial or boundary value problems:  

𝑁[𝑢(𝑥)] = 0                                                                                                                                        (8) 

with initial or boundary conditions 

ℬ (𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑥 ∈ Γ,                                                                                                                 (9) 

where 𝑁 is a nonlinear operator, ℬ is a boundary operator and Γ is a boundary of the domain Ω By 

choosing the initial guess 𝑢0(𝑥) = 𝛽, where  𝛽 is any constant, we construct the zero-order deformation 

equation (1) as follows: 

(1 − 𝑞)𝐿[𝜙(𝑥, 𝑞) − 𝛽] = 𝑞ℏ𝐻(𝑥)(𝑁[𝜙(𝑥, 𝑞)]).                                                                         (10) 

It is obvious that when the embedding parameter 𝑞 = 0 and  𝑞 = 1, Equation (10) becomes 

𝜙(𝑥, 0) = 𝛽       , 𝜙(𝑥, 1) = 𝑢(𝑥) .                                                                                           (11) 

Differentiating Equation (10) once time with respect to the embedding parameter 𝑞 and setting  

𝑞 = 0, then equation (10) becomes 

𝐿[𝑢1(𝑥)] = ℏ𝐻(𝑥)𝑁[𝛽]     ,                                                                                                           (12) 

taking the inverse linear operator(𝐿−1) of  the both sides for the equation (12) becomes    

𝑢1(𝑥, ℏ) = 𝐿−1[ℏ𝐻(𝑥)𝑁[𝛽]]         ,                                                                                               (13)  

such that  𝛽 + 𝑢1(𝑥, ℏ) is satisfies the conditions (9). Differentiating equation (10) 𝑚 times with respect 

to the embedding parameter 𝑞 and then setting  𝑞 = 0 and finally dividing them by 𝑚! and take the 

inverse linear operator(𝐿−1) of the both sides, then the 𝑚th-order deformation equation becomes 

𝑢𝑚(𝑥, ℏ) = 𝑢𝑚−1(𝑥) + 𝐿−1[ℏ𝐻(𝑥)𝑅(𝑢⃗ 𝑚−1)]         ,                              𝑚 ≥ 2                         (14) 

subject to  
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𝜕𝑚ℬ (𝜙(𝑥, 𝑞),
𝜕𝜙(𝑥, 𝑞)

𝜕𝑛
)

𝜕𝑞𝑚
|

𝑞=0

= 0                                                                                                (15) 

where 𝑅(𝑢⃗ 𝑚−1) defined by equation (6). The high-order deformation equation. (14) obviously is just 

the ordinary differential equation with boundary condition (15) and, can be easily solved by using 

some symbolic software programs such as Mathematica or Maple. From equation (7), then The 

analytic approximation solution  given by 

𝑢(𝑥)  ≅ 𝑈𝑀(𝑥, ℏ) = ∑ 𝑢𝑚(𝑥, ℏ)

𝑀

𝑚=0

  .                                                                                                                (16) 

Equation (16) is a family of approximate solutions to the problem (8) in terms of the 

convergence-control parameter ℏ. By drawing ℏ-curve, we get  the set 𝑅ℏ. Using any ℏ 𝜖 𝑅ℏ one can get 

a convergent series solution. 

3. Numerical Results 

3.1. Example (1)  

Consider the BVP with a hyperbolic sine nonlinearity [23] 

𝑢′′′(𝑥) − 𝑥 sinh(𝑢) = 1   ,                                                                                                              (17) 

𝑢(0) = 0, 𝑢(0.25) = 1, 𝑢(1) = 0 .                                                                                                 (18) 

Firstly, we apply the standard  homotopy analysis method on the problem (17). By choosing auxiliary 

linear operator 𝐿 and  initial guess 𝑢0(𝑥) satisfies the boundary condition (18) as follows: 

𝐿[𝜙(𝑥, 𝑞)] =
𝜕3𝜙(𝑥, 𝑞)

𝜕𝑥3
       ,                                                                                                            (19) 

And 

𝑢0(𝑥) =
16

3
𝑥(1 −  𝑥).                                                                                                                                         (20) 

We define a nonlinear operator as 

𝑁[𝜙(𝑥, 𝑞)] =
𝜕3𝜙(𝑥, 𝑞)

𝜕𝑥3
− 𝑥 sinh(𝜙(𝑥, 𝑞)) − 1  ,                                                                   (21) 
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 we can take 𝐻(𝑥) = 1 and from equation (4) then the 𝑚𝑡ℎ-order deformation equation 

𝐿[𝑢𝑚(𝑥) − 𝜒𝑚𝑢𝑚−1(𝑥)] = ℏ 𝑅𝑚(𝑢⃗ 𝑚−1(𝑥)),                                                                            (22) 

with the boundary conditions for 𝑚 ≥ 1 

𝑢𝑚(0) = 0, 𝑢𝑚(. 25) = 0, 𝑢𝑚(1) = 0                                                                                         (23)  

where 𝜒𝑚 is defined by (5) and by equation (6). Thus 𝑅𝑚(𝑢⃗ 𝑚−1(𝑥)) is given by 

𝑅𝑚(𝑢⃗ 𝑚−1(𝑥)) =
1

(𝑚 − 1)!

𝜕𝑚−1 (
𝜕3𝜙(𝑥, 𝑞)

𝜕𝑥3 − 𝑥 𝑠𝑖𝑛ℎ 𝜙(𝑥, 𝑞) − 1)

𝜕𝑞𝑚−1
|

𝑞=0

.                                             (24) 

 Can be calculated  𝑅𝑚(𝑢⃗ 𝑚−1)(24) by using the definition(3) and then 

𝑅1 = 𝑢0
′′′(𝑥) − 𝑥 𝑠𝑖𝑛ℎ 𝑢0(𝑥) − 1 ,                                                                                          (25) 

𝑅2 = 𝑢1
′′′(𝑥) − 𝑥𝑢1(𝑥) cosh 𝑢0(𝑥) ,                                                                                       (26) 

𝑅3 = 𝑢2
′′′(𝑥) −

𝑥

2
(𝑠𝑖𝑛ℎ(𝑢0(𝑥))𝑢1(𝑥)2 + 2𝑐𝑜𝑠ℎ(𝑢0(𝑥))𝑢2(𝑥))                                            (27) 

and so on.  According to the auxiliary linear operator 𝐿 (19), the initial guess 𝑢0(𝑥) (20) and 𝑅1 then the 

first-order deformation equation (m=1) (22) becomes 

𝑢′′′1(𝑥) = ℏ(𝑢0
′′′(𝑥) − 𝑥 𝑠𝑖𝑛ℎ (

16

3
𝑥(1 − 𝑥)) − 1).                                                                    (28) 

The pro0blem (28) and (23) is a linear differential equation but require a very long time using 

the Mathematica to find 𝑢1(𝑥), because the angle of  “Sinh” is polynomial of the second degree. One 

can see equation 𝑅3  (27), this the equation contain two strong functions are 𝑆𝑖𝑛ℎ(𝑢0(𝑥))  and 

𝑐𝑜𝑠ℎ(𝑢0(𝑥)) that means difficulty in obtaining 𝑢3(𝑥). The proposed approach to prevent suffering by 

setting the initial guess 𝑢0(𝑥) = 𝛽, where 𝛽 any constant so as to equation (28) as follows 

𝑢′′′1(𝑥) = ℏ(−𝑥 𝑠𝑖𝑛ℎ 𝛽 − 1)                                                                                                     (29) 

The problem (28) converted to the linear differential equation (29) is very simple and can be 

easily solved by using the Mathematica and this leads to a reduction of time consumed in homotopy 

analysis method. Now we apply the proposed approach for the problem (17) and (18). We Choose the 
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initial guess 𝑢0(𝑥) = 0. Then from equations (13) and (14), the higher order deformation equation (22) 

becomes  for 𝑚 = 1  

𝑢1(𝑥) = ℏ∫ ∫  ∫ −1
𝜁

0

𝑑𝑡𝑑𝜁𝑑𝜏 + 𝑐0 + 𝑐1𝑥 +
𝜏

0

𝑥

0

 𝑐2𝑥
2  ,                                                (30) 

where the integration constants  𝑐0 , 𝑐1 and 𝑐2 are determined by the boundary conditions 

𝑢1(0) = 0,  𝑢1(0.25) = 1 ,  𝑢1(1) = 0                                                                                (31) 

and for 𝑚 ≥ 2 

𝑢𝑚(𝑥) = 𝑢𝑚−1(𝑥) + ℏ∫ ∫  ∫ 𝑅𝑚(𝑢⃗ 𝑚−1(𝑡))
𝜁

0

𝑑𝑡𝑑𝜁𝑑𝜏 + 𝑐0 + 𝑐1𝑥 +
𝜏

0

𝑥

0

 𝑐2𝑥
2  ,                (32) 

where 𝑐0 , 𝑐1 and 𝑐2 are determined by the boundary conditions  

𝑢𝑚(0) = 0,   𝑢𝑚(0.25) = 0.  ,   𝑢𝑚(1) = 0.                                                                       (33) 

We now give the solution of the higher order deformation equation at 𝑚 = 1 and 𝑚 = 2  

𝑢1(𝑥) = −
1

24
(−128 + ℏ)𝑥 −

1

24
(128 − 5ℏ)𝑥2 −

ℏ𝑥3

6
, 

𝑢2(𝑥) =
(−289408 − 215475ℏ)ℏ𝑥

5160960
+

(1378944 + 1076915ℏ)ℏ𝑥2

5160960
+

(−860160 − 860160ℏ)ℏ𝑥3

5160960

+
(−458752 + 3584ℏ)ℏ𝑥5

5160960
+

(229376 − 8960ℏ)ℏ𝑥6

5160960
+

ℏ2𝑥7

1260
, 

and so on. The approximation solution 𝑈𝑀(𝑥, ℏ) to the problem (17) and (18) is given by   

𝑢(𝑥) ≅ 𝑈𝑀(𝑥, ℏ) = ∑ um(𝑥, ℏ)

M

m=0

.                                                                                               (34) 

It is easy to discover the valid region of ℏ which corresponds to the line segment nearly parallel 

to the horizontal axis (constant 𝑈8(0.5, ℏ) value) from Figure 1 that are 

𝑅ℏ ∈ [−0.6, −1.3].   The absolute error is given by 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑈8(𝑥, ℏ) − 𝑢𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|  ,                                                                            (35)  

where 𝑢𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 obtained by  Mathematica package to solve differential equations using “NDSolve” 

command. Table 1 shows The absolute errors (35) at different points in the interval (0,1) when ℏ = −1. 

The results indicate the accuracy of the proposed approach.  

Table 2 shows the CPU time consumed in calculating 𝑢𝑚(𝑥) for the problem (17) by HAM and 

the proposed approach. The proposed approach is powerful than HAM in saving consumed time as 

shown in table 1. We can calculate only the first order deformation equation 𝑢1 using HAM. We waited 
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one full hour to get 𝑢2(𝑥) and did not get it, but the proposed approach can calculate the higher order 

deformation equation in a short time, for example  𝑢8  consumed only 7.925 seconds. 

 

 

Figure 1. ℏ-curve for 𝑈8(0.5, ℏ) of the equation (34). 

 

Table 1. The absolute errors (35) when ℏ = −1. 

𝑥 𝑈8(𝑥, ℏ) Absolute error (35) 

0.1 0.48330167 1.217 × 10−7 

0.2 0.85535085 7.8492 × 10−8 

0.3 1.11726891 1.0678 × 10−7 

0.4 1.27035678 4.086 × 10−7 

0.5 1.31614726 8.1079 × 10−7 

0.6 1.25640126 1.2286 × 10−6 

0.7 1.09303594 1.488 × 10−6 

0.8 0.82799930 1.39459 × 10−6 

0.9 0.46312527 8.09235 × 10−7 

 

Table 2. The CPU time consumed in calculating 𝑢𝑚(𝑥) for example (1) by HAM and 

the proposed approach. 

 𝑢1 𝑢2 𝑢4 𝑢6 𝑢8 

HAM 2.512 N/A N/A N/A N/A 

The Proposed Approach 0.312 0.562 2.075 4.244 7.925 
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3.2. Example (2)  

Consider the boundary value problem with a radical nonlinearity[23] 

𝑢′′′(𝑥) + √1 − 𝑢2(𝑥) = 0  ,                                                                                                      (36) 

𝑢(0) = 0, 𝑢′(0) = 1, 𝑢 (
𝜋

2
) = 1  .                                                                                 (37) 

We have applied the standard homotopy analysis method on the problem and choosing the 

auxiliary linear operator 𝐿in (19) and the initial guess 𝑢0(𝑥) satisfying the boundary condition (37) as 

follows: 

𝑢0(𝑥) = 𝑥 +
4 𝑥2

𝜋2
−

2 𝑥2

𝜋
.                                                                                                              (38) 

We define a nonlinear operator as 

𝑁[𝜙(𝑥, 𝑞)] =
𝜕3𝜙(𝑥, 𝑞)

𝜕𝑥3
+ √1 − (𝜙(𝑥, 𝑞))

2
  ,                                                                         (39) 

  we can take 𝐻(𝑥) = 1 and from equation (4) then the 𝑚𝑡ℎ-order deformation equation 

𝐿[𝑢𝑚(𝑥) − 𝜒𝑚𝑢𝑚−1(𝑥)] = ℏ 𝑅𝑚(𝑢⃗ 𝑚−1(𝑥)),                                                                            (40) 

with the boundary conditions for 𝑚 ≥ 1 

𝑢𝑚(0) = 0, 𝑢′𝑚(0) = 0, 𝑢𝑚 (
𝜋

2
) = 0                                                                                           (41)  

where 𝜒𝑚 is defined by (5) and by equation (6). Thus 𝑅𝑚(𝑢⃗ 𝑚−1(𝑥)) is given by 

𝑅𝑚(𝑢⃗ 𝑚−1(𝑥)) =
1

(𝑚 − 1)!

𝜕𝑚−1 (
𝜕3𝜙(𝑥, 𝑞)

𝜕𝑥3 + √1 + (𝜙(𝑥, 𝑞))
2
)

𝜕𝑞𝑚−1 |
|

𝑞=0

                               (42) 

 Calculating  𝑅𝑚(𝑢⃗ 𝑚−1) (42) using the definition (3), then 

𝑅1 = 𝑢0
′′′(𝑥) + √1 − (𝑢0(𝑥))

2
 ,                                                                                                 (43) 

𝑅2 = 𝑢1
′′′(𝑥) −

𝑢0(𝑥)𝑢1(𝑥)

√1 − (𝑢0(𝑥))2
   ,                                                                                               (44) 

𝑅3 = 𝑢2
′′′(𝑥) −

(𝑢0(𝑥))2(𝑢1(𝑥))2

2 (1 − (𝑢0(𝑥))
2
)
3 2⁄

−
(𝑢1(𝑥))2

2√1 − (𝑢0(𝑥))2
−

𝑢0(𝑥)𝑢2(𝑥)

√1 − (𝑢0(𝑥))2
   ,                    (45) 

 and so on. According to the auxiliary linear operator 𝐿 (19), the initial guess 𝑢0(𝑥) (38) and 𝑅1 then 

the first-order deformation equation (m=1) (40) become 



Int. J. Modern Math. Sci. 2014, 9(3): 154-172  

        

Copyright © 2014 by Modern Scientific Press Company, Florida, USA 

161 

𝑢′′′1(𝑥) + ℏ  √1 − (𝑥 +
4 𝑥2

𝜋2
−

2 𝑥2

𝜋
)

2

 = 0.                                                                            (46) 

The problem (46) and (41) is a linear differential equation but require a very long time using the 

mathematica to find 𝑢1(𝑥). We waited one full hour to get 𝑢1(𝑥) and did not get it. Now we apply the 

proposed approach  to the problem (36) and (37) to see that the proposed approach reduced the time to 

find the higher  order deformation equation (40). Choosing the initial guess 𝑢0(𝑥) = 0, from equations 

(13) and (14), the higher order deformation equation (40) becomes  for 𝑚 = 1  

𝑢1(𝑥) = ℏ∫ ∫  ∫ 𝑢0
′′′ + √1 − (𝑢0)2

𝜁

0

𝑑𝑡𝑑𝜁𝑑𝜏 + 𝑐0 + 𝑐1𝑥 +
𝜏

0

𝑥

0

 𝑐2𝑥
2  ,                             (47) 

where the integration constants  𝑐0 , 𝑐1 and 𝑐2 are determined by the boundary conditions 

𝑢1(0) = 0,    𝑢′1(0) = 1  , 𝑢1(
𝜋

2
)  =  1                                                                                        (48) 

and for 𝑚 ≥ 2 

𝑢𝑚(𝑥) = 𝑢𝑚−1(𝑥) + ℏ∫ ∫  ∫ 𝑅𝑚(𝑢⃗ 𝑚−1(𝑡))
𝜁

0

𝑑𝑡𝑑𝜁𝑑𝜏 + 𝑐0 + 𝑐1𝑥 +
𝜏

0

𝑥

0

 𝑐2𝑥
2  ,                (49) 

where 𝑐0 , 𝑐1 and 𝑐2 are determined by the boundary conditions  

𝑢𝑚(0) = 0, ,  𝑢′𝑚(0) = 0      𝑢𝑚(
𝜋

2
)  =  0.                                                                          (50) 

We now give the solution of the higher order deformation equation at 𝑚 = 1 and 𝑚 = 2  

𝑢1(𝑥) = 𝑥 +
1

12
(
48

𝜋2
−

24

𝜋
− ℏ𝜋)𝑥2 +

ℏ𝑥3

6
, 

𝑢2(𝑥) = −
1

12
ℏ(1 + ℏ)𝜋𝑥2 +

1

6
ℏ(1 + ℏ)𝑥3, 

and so on. The approximate solution 𝑈𝑀(𝑥, ℏ) to the  problem (36) and (37) is given by   

𝑢(𝑥) ≅ 𝑈𝑀(𝑥, ℏ) = ∑ um(𝑥, ℏ)

M

m=0

.                                                                                               (51) 

It is easy to discover the valid region of ℏ which corresponds to the line segment nearly parallel 

to the horizontal axis (constant 𝑈12(0.5, ℏ) value). From Figure 2 this is  𝑅ℏ ∈ [−0.6, −1.3]. The 

absolute error is given by 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑈12(𝑥, ℏ) − 𝑢(𝑥)|  ,                                                                                     (52)  

where 𝑢(𝑥) is the exact solution given by  

𝑢(𝑥) = sin(𝑥)                                                                                                                                  (53) 
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Figure 3 shows the absolute errors (52) when ℏ = −1. The curve indicates the accuracy of the 

proposed approach. Table 3 shows the CPU time consumed in calculating 𝑢𝑚(𝑥) for the problem (36) 

by HAM and the proposed approach. We waited one full hour to get 𝑢1(𝑥) using HAM and did not get 

it, but using the proposed approach we can calculate the higher order deformation equation in a short 

time, for example  𝑢12  consumed only 203.455 seconds. 

 

Table 3. The CPU time consumed in calculating 𝑢𝑚(𝑥) for example (2) by HAM and 

the proposed approach 

 𝑢1 𝑢2 𝑢4 𝑢6 𝑢8 𝑢10 𝑢12 

HAM N/A N/A N/A N/A N/A N/A N/A 

The Proposed Approach 0.577 0.717 3.042 10.499 42.339 108.983 203.455 

 

   

Figure 2. ℏ-curve for 𝑈12(0.5, ℏ) of the equation (51). 

 

 

 

Figure 3. The absolute error (52) for example (2). 
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3.3. The Sine-Gordon Equation  

We now apply the proposed approach for solving the nonlinear sine-Gordon equation [20,21]  in 

the form: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + sin(𝑢) = 0,                                                                                                                 (54) 

with initial conditions 

𝑢(𝑥, 0) = 0, 𝑢𝑡(𝑥, 0) = 4 sech(𝑥) .                                                                                    (55) 

The sine-Gordon equation (54) contains the strong nonlinear term sin(𝑢). We apply the proposed 

approach on the problem by choosing an auxiliary linear operator and  an initial guess 𝑢0(𝑥, 𝑡) as follows 

𝐿[𝜙(𝑥, 𝑡, 𝑞)] =
𝜕2𝜙(𝑥, 𝑡, 𝑞)

𝜕𝑡2
                                                                                                             (56) 

and 

𝑢0(𝑥, 𝑡) = 0    .                                                                                                                                  (5𝟕) 

Taking 𝐻(𝑥) = 1, the first order deformation equation (13) becomes   

𝑢1(𝑥, 𝑡) = ℏ∫ ∫  ∫ 𝑅1

𝜁

0

𝑑𝑡𝑑𝜁𝑑𝜏 + 𝑐0 + 𝑐1𝑡 +
𝜏

0

𝑡

0

 𝑐2𝑡
2  ,                                                              (58) 

where the integration constants  𝑐0 , 𝑐1 and 𝑐2 are determined by the boundary conditions 

𝑢1(𝑥, 0) = 0,  
𝜕𝑢1(𝑥, 𝑡)

𝜕𝑡
|
𝑡=0

= 4 𝑠𝑒𝑐ℎ(𝑥)                                                                          (59) 

and the higher order deformation equation (14) becomes  for 𝑚 ≥ 2 

𝑢𝑚(𝑥, 𝑡) = 𝑢𝑚−1(𝑥, 𝑡) + ℏ∫ ∫  ∫ 𝑅𝑚(𝑢⃗ 𝑚−1(𝑥, 𝑡))
𝜁

0

𝑑𝑡𝑑𝜁𝑑𝜏 + 𝑐0 + 𝑐1𝑡 +
𝜏

0

𝑡

0

 𝑐2𝑡
2  ,             (60) 

where 𝑐0 , 𝑐1 and 𝑐2 are determined by the boundary conditions  

𝑢𝑚(𝑥, 0) = 0,  
𝜕𝑢𝑚(𝑥, 𝑡)

𝜕𝑡
|
𝑡=0

= 0                                                                          (61) 

𝑅𝑚(𝑢⃗ 𝑚−1(𝑥, 𝑡)) can be calculated  by using the definition (3), then 
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𝑅1 =
𝜕2𝑢0(𝑥, 𝑡)

𝜕𝑡2
−

𝜕2𝑢0(𝑥, 𝑡)

𝜕𝑥2
+ sin (𝑢0(𝑥, 𝑡))                                                                                             (62) 

𝑅2 =
𝜕2𝑢1(𝑥, 𝑡)

𝜕𝑡2
−

𝜕2𝑢1(𝑥, 𝑡)

𝜕𝑥2
− 𝑐𝑜𝑠(𝑢0(𝑥, 𝑡))𝑢1(𝑥, 𝑡),                                                                              (63) 

𝑅3 =
𝜕2𝑢2(𝑥, 𝑡)

𝜕𝑡2
−

𝜕2𝑢2(𝑥, 𝑡)

𝜕𝑥2
+ (

1

2
) (−sin(𝑢0(𝑥, 𝑡))𝑢1(𝑥, 𝑡)2 +   2cos(𝑢0(𝑥, 𝑡))𝑢2(𝑥, 𝑡))           (64) 

and so on. We now give the solution of the higher order deformation equation at 𝑚 = 1 and 𝑚 = 2 

𝑢1(𝑥, 𝑡) = 4𝑡 sech(𝑥), 

𝑢2(𝑥, 𝑡) =
4

3
ℏ𝑡3(𝑠𝑒𝑐ℎ(𝑥))2 

and so on. The approximate solution 𝑈𝑀(𝑥, 𝑡, ℏ) to the problem (54) and (55) is given by   

𝑢(𝑥, 𝑡) ≅ 𝑈𝑀(𝑥, 𝑡, ℏ) = ∑ um(𝑥, 𝑡, ℏ)

M

m=0

.                                                                                    (65) 

The values of ℏ in 𝑅ℏ ∈ [−0.6, −1.3] are found from the ℏ -curve in figure 4. The absolute error 

is given by 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑈𝑀(𝑥, 𝑡, ℏ) − 𝑢(𝑥, 𝑡)|  ,                                                                                    (66)  

where 𝑢(𝑥, 𝑡) is the exact solution given by  

𝑢(𝑥, 𝑡) = 4 𝑡𝑎𝑛−1(𝑡𝑠𝑒𝑐ℎ(𝑥)).                                                                                                           (67) 

From tables 4 and 5 it is obvious that the proposed approach leads to a remarkable accuracy of 

the approximate solution. It is important to note that the accuracy of the solution obtained will be 

improved greatly if we increase the obtained terms. We can conclude that this method is more powerful 

for solving the sine Gordon equation. Finally, table 6 shows the CPU time consumed in calculating 

𝑢𝑚(𝑥, 𝑡) by HAM and the proposed approach. We apply the standard homotopy analysis method, by 

choosing an auxiliary linear operator (56) and an initial guess 𝑢0(𝑥, 𝑡) =  4𝑡 sech(𝑥). We waited one 

full hour to get 𝒖𝟑(𝒙) using HAM and did not get it, but using the proposed approach we can calculate 

the higher order deformation equation in a short time, for example  𝒖𝟕 consumed 𝟑𝟒𝟑. 𝟏𝟓𝟒  seconds. 
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Figure 4.  ℏ-curve for (a) 𝑈7(5,2, ℏ) (b) 𝑈𝑡7(2,0.5, ℏ)  of equation (65)  

Table 4. The absolute error (66) of  𝑈3(𝑥, 𝑡, ℏ) (65) at  ℏ = −1. 

 

𝑥 

    𝑡 
0 0.1 1 5 

0.02 1.7 × 10−9 1.68 × 10−9 4.64 × 10−10 4.175 × 10−15 

0.05 1.66 × 10−7 1.63 × 10−7 4.53 × 10−8 4.078 × 10−13 

0.08 1.73 × 10−6 1.71 × 10−6 4.75 × 10−7 4.276 × 10−12 

0.1 5.27 × 10−6 5.19 × 10−6 1.44 × 10−6 1.30 × 10−11 

0.3 1.17 × 10−3 1.16 × 10−3 3.46 × 10−4 3.171 × 10−9 

0.5 1.29 × 10−2 1.27 × 10−2 4.33 × 10−3 4.07 × 10−8 

0.8 9.42 × 10−2 9.41 × 10−2 4.27 × 10−2 4.27 × 10−7 

Table 5. The absolute error (66) of  𝑼𝟔(𝒙, 𝒕, ℏ) (65) at ℏ = −1. 

𝑥 

𝑡 
0 0.1 1 5 

0.02 1.80 × 10−16 1.52 × 10−16 6.93 × 10−18 2.16 × 10−19 

0.05 6.21 × 10−13 5.99 × 10−13 2.87 × 10−14 0 

0.08 4.24 × 10−11 4.10 × 10−11 1.97 × 10−12 1.73 × 10−18 

0.1 3.15 × 10−10 3.04 × 10−10 1.47 × 10−11 1.21 × 10−17 

0.3 5.68 × 10−6 5.49 × 10−6 2.86 × 10−7 8.42 × 10−14 

0.5 4.78 × 10−4 4.64 × 10−4 2.78 × 10−5 6.40 × 10−12 

0.8 2.22 × 10−3 7.67 × 10−2 5.59 × 10−4 1.03 × 10−10 
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Table 6. The CPU time consumed in calculating 𝒖𝒎(𝒙, 𝒕) for The Sine-Gordon equation (54) by HAM 

and the proposed approach. 

 

 𝑢1 𝑢2 𝑢3 𝑢5 𝑢7 

HAM 3.292 32.339 N/A N/A N/A 

The Proposed Approach 0.311 0.451 1.496 10.077 343.154 

 

3.4. The First Extension of  Bratu Problem 

We consider the first extension of Bratu problem [22] in form: 

𝑢′′(𝑥) + 𝑒𝑢(𝑥) + 𝑒2𝑢(𝑥) = 0       ,                                                                                                   (68) 

with boundary conditions 

𝑢(0) = 𝑢(1) = 0   .                                                                                                                           (69) 

Wazwaz studied the problem in 2012 using Adomian decomposition method and Padé 

approximants[22]. The result of the study is that the problem has  dual solutions. In order to solve the 

problem (68) using the proposed approach, assume that 𝑢(0.5) = 𝛼, then the boundary conditions (69) 

become 

𝑢(0) = 0, 𝑢(0.5) = 𝛼                                                                                                                           (70) 

and 

𝑢(1) = 0  .                                                                                                                                          (71) 

We apply the proposed approach for the problem (68) and  the boundary condition (70). By 

choosing an auxiliary linear operator 𝐿 and  an initial guess 𝑢0(𝑥) as follows: 

𝐿[𝜙(𝑥, 𝑞)] =
𝜕2𝜙(𝑥, 𝑞)

𝜕𝑥2
                                                                                                                        (72) 

and 

𝑢0(𝑥) = 0     .                                                                                                                                     (73) 

Taking 𝐻(𝑥) = 1, the first order deformation equation (13) becomes   

𝑢1(𝑥, 𝛼) = ℏ∫ ∫  𝑅1 𝑑𝑡𝑑𝜏 + 𝑐0 + 𝑐1𝑥
𝜏

0

𝑥

0

  ,                                                                                 (74) 

where the integration constants  𝑐0 and 𝑐1 are determined by the boundary conditions 

𝑢1(0) = 0, 𝑢1(0.5) = 𝛼                                                                                                            (75) 

and the higher order deformation equation (14) becomes  for 𝑚 ≥ 2 

𝑢𝑚(𝑥, 𝛼) = 𝑢𝑚−1(𝑥, 𝛼) + ℏ∫ ∫  𝑅𝑚(𝑢⃗ 𝑚−1(𝑡))𝑑𝑡𝑑𝜏 + 𝑐0 + 𝑐1𝑥
𝜏

0

𝑥

0

  ,                                 (76) 

where 𝑐0 and 𝑐1 are determined by the boundary conditions  
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𝑢𝑚(0) = 0, 𝑢𝑚(0.5) = 0                                                                                                       (77) 

𝑅𝑚(𝑢⃗ 𝑚−1(𝑥, 𝑡)) can be calculated by using the definition (3), then 

𝑅1 = 𝑢0
′′(𝑡) + 𝑒𝑢0(𝑡) + 𝑒2𝑢0(𝑡)    ,                                                                                                (78) 

𝑅2 = 𝑢1
′′(𝑡) + 𝑒𝑢0(𝑡)𝑢1(𝑡) + 2𝑒2𝑢0(𝑡)𝑢1(𝑡),                                                                             (79) 

𝑅3 = 𝑢2
′′(𝑡) + (1/2)(𝑒𝑢0(𝑡)𝑢1(𝑡)

2 + 4𝑒2𝑢0(𝑡)𝑢1(𝑡)
2 + 2𝑒𝑢0(𝑡)𝑢2(𝑡) + 4𝑒2𝑢0(𝑡)𝑢2(𝑡))  (80) 

and so on. We now give the solution of the higher order deformation equation at 𝑚 = 1 and 𝑚 = 2  

𝑢1(𝑥, 𝛼, ℏ) =
1

2
(−ℏ + 4 𝛼)𝑥 + ℏ𝑥2 

𝑢2(𝑥, 𝛼, ℏ) = 
1

32
ℏ(−16 − 15ℏ − 8 𝛼)𝑥 +

1

32
ℏ(32 + 32ℏ)𝑥2 +

1

32
ℏ(−8ℏ + 32𝛼)𝑥3 +

ℏ2𝑥4

4
, 

and so on. The approximate solution 𝑈𝑀(𝑥, 𝛼, ℏ) to the  problem (68) and (70) is given by   

𝑢(𝑥) ≅ 𝑈𝑀(𝑥, 𝛼, ℏ) = ∑ um(𝑥, 𝛼, ℏ)

M

m=0

.                                                                                     (81) 

Equation (81) is a family of approximate solutions to the problem (68) in terms of the convergence-

control parameter ℏ and 𝛼. Using the boundary condition(71),  𝑢(1) = 0 , we find that: 

𝑢(1) ≅ 𝑈𝑀(1, 𝛼, ℏ) = 0.                                                                                                                 (82) 

We get 𝛼 as a function of ℏ from (82).  This is plotted in Figure 5. From Figure 5, it is clear that 

two values of 𝛼, firstly lower solution at ℏ interval [−0.5, −1.5], secondly upper solution at ℏ interval 

[−1.2, −1.9]. This example shows that the present method not only predict existence of multiple solution 

(two solutions) as shown in figure 5 by finding two constant values of 𝛼 corresponding to two intervals 

of ℏ , but also calculate all branches of solution effectively without using one more initial approximation 

guess, one more auxiliary function and one more auxiliary linear operator. When ℏ = −1 we get the 

value of 𝛼 = 𝑢(0.5) = 0.444153 for lower branch solution and for upper branch solution when ℏ =

−1.8, we get 𝛼 = 1.07581. the values of 𝑢′(0) are1.5966 and 3.3846  for the lower and for upper 

branch solutions, respectively. The absolute error is given by 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑈22(𝑥, 𝛼, ℏ) − 𝑢𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|  ,                                                                     (83)  

where 𝑢𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 obtained by  Mathematica package to solve differential equations using “NDSolve”  

command and the absolute residual error is given by 

Absolute residual error = |𝑈22′′(𝑥, 𝛼, ℏ) + 𝑒𝑈22(𝑥,𝛼,ℏ)) + 𝑒2𝑈22(𝑥,𝛼,ℏ))|                                                     (84)  

Table 7 shows the absolute error (83) for only lower solution against to numerical solution, 

because the Mathematica program detect only one solution to the problem (68) and this shows the 

importance of semi-analytic methods in this kind of problems. Table 6 shows the accuracy of the 



Int. J. Modern Math. Sci. 2014, 9(3): 154-172  

        

Copyright © 2014 by Modern Scientific Press Company, Florida, USA 

168 

proposed approach in finding the lower solution of the problem (68). Figure 6 and figure 7 shows the 

absolute residual error (84) for the lower and upper solution. The Absolute residual error, indicating the 

accuracy of the approach used. Finally, figure 8 and figure 9 shows the lower and upper solution of the 

first extension of Bratu problem (68) obtained by the proposed approach. 

Table 7. The absolute error (83)  and 𝑢(𝑥) obtained by the proposed approach for the first extension of 

Bratu problem (68). 

 Lower solution ℏ = −1, 𝛼 = 0.444153 Upper solution ℏ = −1.8, 𝛼 = 1.07581 

𝑥 Proposed approach 𝑢(𝑥) Absolute error (83) Proposed approach 𝑢(𝑥) 

0.1 0.14884306037 5.04 × 10−10 0.32658338150 

0.2 0.27259259947 3.8 0 × 10−9 0.61954042905 

0.3 0.36599845458 1.62 × 10−9 0.85886587377 

0.4 0.42430886894 1.43 × 10−8 1.01894634253 

0.5 0.44415399569 3.58 × 10−8 1.07581500664 

0.6 0.42430886904 6.04 × 10−8 1.01927870501 

0.7 0.36599845447 7.43 × 10−8 0.85949652183 

0.8 0.27259259879 7.25 × 10−8 0.62043963941 

0.9 0.14884305891 6.88 × 10−8 0.32777167385 

 

Figure 5.  α − ℏ curve of equation (82) at 𝑴 = 𝟐𝟐. 
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Figure 6. The absolute residual error (84) for lower solution of the first extension of 

  Bratu problem (68). 

 

 

 

 

 

Figure 7. The absolute residual error (84) for lower solution of the first extension of 

Bratu problem (68). 
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Figure 8. The lower solution of the first extension of Bratu problem (68) obtained 

by the proposed approach. 

 

 

 

 

Figure 9. The upper solution of the first extension of Bratu problem (68) obtained 

by the proposed approach. 
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4. Conclusions 

In this paper, we proposed an approach based on the homotopy analysis method to solve 

nonlinear initial or boundary value problems with strongly nonlinear terms. The proposed approach is 

to prevent suffering from the strongly nonlinear terms like (exp, sinh, cos,…) in the frame of the 

homotopy analysis method . We solve the problems without any transformation or approximation. The 

proposed approach succeeded in detecting dual solutions to the First extension of Bratu problem. It also  

reduces time consuming in the homotopy analysis method. 
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